Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.5 - Inverse Functions and Logarithms - 1.5 Exercises - Page 65: 24

Answer

$y=\frac{1}{2}+\sqrt {x+\frac{1}{4}}$

Work Step by Step

$y=x^2-x, x\geq\frac{1}{2}$ $=(x^2-x+\frac{1}{4})-\frac{1}{4}$ $=(x-\frac{1}{2})^2-\frac{1}{4}$ $(x-\frac{1}{2})^2=y+\frac{1}{4}$ $x-\frac{1}{2}=\pm \sqrt {y+\frac{1}{4}}$ $\because x\geq\frac{1}{2}, x-\frac{1}{2}\geq0$ $\therefore x-\frac{1}{2}=\sqrt {y+\frac{1}{4}}$ $x=\frac{1}{2}+\sqrt {y+\frac{1}{4}}$ $y\rightleftharpoons x$ $f^{-1}(x)=y=\frac{1}{2}+\sqrt {x+\frac{1}{4}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.