Answer
{$-3,\dfrac{1}{2} $}
Work Step by Step
Given: $2x^2+5x-3=0$
This can be re-written as: $x^2+\dfrac{5}{2}x=\dfrac{3}{2}$
We will have to add both sides $(\dfrac{5}{4})^2$ to complete the square.
Thus, $x^2+\dfrac{5}{2}x+(\dfrac{5}{4})^2=\dfrac{3}{2}+(\dfrac{5}{4})^2$
or, $(x+\dfrac{5}{4})^2=\dfrac{49}{16}$
or, $(x+\dfrac{5}{4})=\pm\sqrt{\dfrac{49}{16}}$
or, $x=-\dfrac{5}{4} \pm \dfrac{7}{4}$
Hence, our desired solution set is {$-3,\dfrac{1}{2} $}