Answer
{$2-2i,2+2i$}
Work Step by Step
Given: $x^2-4x+8=0$
This can be re-written as: $x^2-4x=-8$
We will have to add both sides $(-2)^2$ to complete the square.
Thus, $x^2-4x+(-2)^2=-8+(-2)^2$
or, $x^2-4x+4=-4$
or, $(x-2)^2=-4$
or, $x-2=\pm \sqrt {-4} \implies x =2 \pm 2i$
Hence, our desired solution set is {$2-2i,2+2i$}