Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.4 - Adding, Subtracting, and Dividing Radical Expressions - Exercise Set - Page 539: 81

Answer

Perimeter $=18\sqrt {5}$ feet. Area $=100$ square feet.

Work Step by Step

Length of the rectangle $l=\sqrt {125}$ feet. Width of the rectangle $w=2\sqrt {20}$ feet. Perimeter: $\Rightarrow P=2l+2w$ Substitute values. $\Rightarrow P=2(\sqrt {125})+2(2\sqrt {20})$. Clear the parentheses. $\Rightarrow P=2\sqrt {5^3}+4\sqrt {5\cdot 2^2}$. Take the square root. $\Rightarrow P=2\cdot 5\sqrt {5}+4\cdot 2\sqrt {5}$. Simplify. $\Rightarrow P=10\sqrt {5}+8\sqrt {5}$. Use the distributive property. $\Rightarrow P=(10+8)\sqrt {5}$. Simplify. $\Rightarrow P=18\sqrt {5}$. Hence, the perimeter is $18\sqrt {5}$ feet. Area : $\Rightarrow A=lw$ Substitute values. $\Rightarrow A=(\sqrt {125})(2\sqrt {20})$ Clear the parentheses. $\Rightarrow A=2\sqrt {5^3}\cdot\sqrt {5\cdot2^2}$ Multiply the radicands and retain the common index. $\Rightarrow A=2\sqrt {5^3\cdot5\cdot2^2}$ Simplify. $\Rightarrow A=2\sqrt {5^4\cdot2^2}$ $\Rightarrow A=2\cdot 5^2\cdot2$ Simplify. $\Rightarrow A=100$ Hence, the area is $100$ square feet.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.