Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.4 - Adding, Subtracting, and Dividing Radical Expressions - Exercise Set - Page 539: 80

Answer

$ \left (\frac{f}{g} \right )(x)=\frac{x\sqrt [3]{x^2}}{2}$. $(0,\infty)$.

Work Step by Step

The given functions are $f(x)=\sqrt[3] {2x^6}$ and $g(x)=\sqrt [3]{16x}$ $\Rightarrow \left (\frac{f}{g} \right )(x)=\frac{f(x)}{g(x)}$ Substitute both functions. $\Rightarrow \left (\frac{f}{g} \right )(x)=\frac{\sqrt[3] {2x^6}}{\sqrt [3]{16x}}$ Divide the radicands and retain the common index. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt[3] {\frac{2x^6}{2^4x}}$ Divide factors in the radicand. Subtract exponents on common bases. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt[3] {2^{1-4}x^{6-1}}$ Simplify. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt[3] {2^{-3}x^{5}}$ $\Rightarrow \left (\frac{f}{g} \right )(x)=2^{-1}x\sqrt [3]{x^2}$. $\Rightarrow \left (\frac{f}{g} \right )(x)=\frac{x\sqrt [3]{x^2}}{2}$. The domain is all positive real numbers. The interval notation is $(0,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.