Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.4 - Adding, Subtracting, and Dividing Radical Expressions - Exercise Set - Page 539: 56

Answer

$3a^5b^6\sqrt{2ab}$

Work Step by Step

RECALL: (1) The quotient rule: $\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\dfrac{a}{b}}$ where $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b\ne0$ (2) $\dfrac{a^m}{a^n} = a^{m-n}, a \ne =0$ Use the quotient rule above to obtain: $\require{cancel}=\sqrt{\dfrac{54a^7b^{11}}{3a^{-4}b^{-2}}} \\=\sqrt{\dfrac{18\cancel{54}a^7b^{11}}{\cancel{3}a^{-4}b^{-2}}} \\=\sqrt{\dfrac{18a^7b^{11}}{a^{-4}b^{-2}}}$ Use rule (2) above to obtain: $=\\=\sqrt{18a^{7-(-4)}b^{11-(-2)}} \\=\sqrt{18a^{7+4}b^{11+2}} \\=\sqrt{18a^{11}b^{13}}$ Factor the radicand so that at least one factor is a perfect square to obtain: $=\sqrt{(9a^{10}b^{12})(2ab)} \\=\sqrt{(3a^5b^6)^2(2ab)}$ Simplify to obtain: $=3a^5b^6\sqrt{2ab}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.