Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.4 - Adding, Subtracting, and Dividing Radical Expressions - Exercise Set - Page 539: 78

Answer

$\left (\frac{f}{g} \right )(x)=\sqrt{x-5}$. $[5,\infty)$.

Work Step by Step

The given functions are $f(x)=\sqrt {x^2-25}$ and $g(x)=\sqrt {x+5}$ $\Rightarrow \left (\frac{f}{g} \right )(x)=\frac{f(x)}{g(x)}$ Substitute both functions. $\Rightarrow \left (\frac{f}{g} \right )(x)=\frac{\sqrt {x^2-25}}{\sqrt {x+5}}$ Divide the radicands and retain the common index. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt{\frac{ {x^2-25}}{x+5}}$ Factor $x^2-25$ $\Rightarrow x^2-5^2$ Use the special formula $A^2-B^2=(A+B)(A-B)$. $\Rightarrow (x+5)(x-5)$ Back substitute the factor into the fraction. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt{\frac{ {(x+5)(x-5)}}{x+5}}$ Cancel common terms. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt{x-5}$ The domain is all positive real numbers greater than or equal to $5$. The interval notation is $[5,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.