Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.4 - Adding, Subtracting, and Dividing Radical Expressions - Exercise Set - Page 539: 79

Answer

$ \left (\frac{f}{g} \right )(x)=2x\sqrt [3]{2x}$. $(-\infty,0)\cup(0,\infty)$.

Work Step by Step

The given functions are $f(x)=\sqrt[3] {32x^6}$ and $g(x)=\sqrt [3]{2x^2}$ $\Rightarrow \left (\frac{f}{g} \right )(x)=\frac{f(x)}{g(x)}$ Substitute both functions. $\Rightarrow \left (\frac{f}{g} \right )(x)=\frac{\sqrt[3] {32x^6}}{\sqrt [3]{2x^2}}$ Divide the radicands and retain the common index. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt[3] {\frac{32x^6}{2x^2}}$ Divide factors in the radicand. Subtract exponents on common bases. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt[3] {16x^{6-2}}$ Simplify. $\Rightarrow \left (\frac{f}{g} \right )(x)=\sqrt[3] {16x^{4}}$ The domain is all positive and negative real numbers excluding zero. The interval notation is $(-\infty,0)\cup(0,\infty)$. $\Rightarrow \left (\frac{f}{g} \right )(x)=2x\sqrt [3]{2x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.