Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.4 - Adding, Subtracting, and Dividing Radical Expressions - Exercise Set - Page 539: 73

Answer

$7x\sqrt { 3xy}$.

Work Step by Step

The given expression is $=2x\sqrt {75xy}-\frac{\sqrt {81xy^2}}{\sqrt {3x^{-2}y}}$ Divide the radicands and retain the common index. $=2x\sqrt {5^2\cdot 3xy}-\sqrt {\frac{3^4xy^2}{ {3x^{-2}y}}}$ Divide factors in the radicand. Subtract exponents on common bases. $=2x\sqrt {5^2\cdot 3xy}-\sqrt {3^{4-1}x^{1+2}y^{2-1}}$ Simplify. $=2x\sqrt {5^2\cdot 3xy}-\sqrt {3^3x^{3}y^{1}}$ $=2x\cdot 5\sqrt { 3xy}-3x\sqrt {3xy}$ Simplify. $=10x\sqrt { 3xy}-3x\sqrt {3xy}$ By using the distributive property: $=(10x-3x)\sqrt { 3xy}$ Simplify. $=7x\sqrt { 3xy}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.