Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 427: 61

Answer

$\frac{8x^3-32x^2+23x+6}{(x+2)(x-1)(x-2)(x-2)}$.

Work Step by Step

The given expression is $=\frac{3x}{x^2-4}+\frac{5x}{x^2+x-2}-\frac{3}{x^2-4x+4}$ First denominator $=x^2-4$. Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=x^2-(2)^2$ $=(x+2)(x-2)$ Second denominator $=x^2+x-2$. Rewrite the middle term $x$ as $2x-x$ $=x^2+2x-x-2$ Group terms. $=(x^2+2x)+(-x-2)$ Factor each term. $=x(x+2)-1(x+2)$ Factor out $(x+2)$. $=(x+2)(x-1)$. Second denominator $=x^2-4x+4$. Rewrite middle term $-4x$ as $-2x-2x$ $=x^2-2x-2x+4$ Group terms. $=(x^2-2x)+(-2x+4)$ Factor each term. $=x(x-2)-2(x-2)$ Factor out $(x-2)$. $=(x-2)(x-2)$ Substitute all factors into the given expression. $=\frac{3x}{(x+2)(x-2)}+\frac{5x}{(x+2)(x-1)}-\frac{3}{(x-2)(x-2)}$ The LCM of all the denominators is $=(x+2)(x-1)(x-2)(x-2)$. Multiply all fractions to make denominators equal. $=\frac{3x}{(x+2)(x-2)}\times \frac{(x-2)(x-1)}{(x-2)(x-1)}+\frac{5x}{(x+2)(x-1)}\times \frac{(x-2)(x-2)}{(x-2)(x-2)}-\frac{3}{(x-2)(x-2)}\times \frac{(x+2)(x-1)}{(x+2)(x-1)}$ Simplify. $=\frac{3x(x-2)(x-1)}{(x+2)(x-1)(x-2)(x-2)}+\frac{5x(x-2)(x-2)}{(x+2)(x-1)(x-2)(x-2)}-\frac{3(x+2)(x-1)}{(x+2)(x-1)(x-2)(x-2)}$ $=\frac{3x(x-2)(x-1)+5x(x-2)(x-2)-3(x+2)(x-1)}{(x+2)(x-1)(x-2)(x-2)}$ $=\frac{3x(x^2-x-2x+2)+5x(x^2-4x+4)-3(x^2+2x-x-2)}{(x+2)(x-1)(x-2)(x-2)}$ Simplify. $=\frac{3x^3-9x^2+6x+5x^3-20x^2+20x-3x^2-3x+6}{(x+2)(x-1)(x-2)(x-2)}$ $=\frac{8x^3-32x^2+23x+6}{(x+2)(x-1)(x-2)(x-2)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.