Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 427: 54

Answer

$\frac{x^2-2x+14}{(x-3)(x+1)}$.

Work Step by Step

The given expression is $=\frac{x}{x-3}+\frac{x+2}{x^2-2x-3}-\frac{4}{x+1}$ First denominator $=(x-3)$. Second denominator $=x^2-2x-3$. Rewrite the middle term $-2x$ as $-3x+1x$ $=x^2-3x+1x-3$ Group terms. $=(x^2-3x)+(1x-3)$ Factor each term. $=x(x-3)+1(x-3)$ Factor out $(x-3)$. $=(x-3)(x+1)$ Third denominator $=(x+1)$ Substitute all factors into the given expression. $=\frac{x}{x-3}+\frac{x+2}{(x-3)(x+1)}-\frac{4}{x+1}$ The LCM of all the denominators is $=(x-3)(x+1)$. $=\frac{x}{x-3}\times \frac{x+1}{x+1}+\frac{x+2}{(x-3)(x+1)}-\frac{4}{x+1}\times \frac{x-3}{x-3}$ Simplify. $=\frac{x(x+1)}{(x-3)(x+1)}+\frac{x+2}{(x-3)(x+1)}-\frac{4(x-3)}{(x+1)(x-3)}$ $=\frac{x(x+1)+x+2-4(x-3)}{(x-3)(x+1)}$ $=\frac{x^2+x+x+2-4x+12}{(x-3)(x+1)}$ Simplify. $=\frac{x^2-2x+14}{(x-3)(x+1)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.