Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 427: 58

Answer

$\frac{x^2-8x-1}{2(x+1)^2(x-1)}$.

Work Step by Step

Factor each term of the given expression. $\frac{x-1}{x^2+2x+1}-\frac{3}{2x-2}+\frac{x}{x^2-1}=\frac{x-1}{(x+1)(x+1)}-\frac{3}{2(x-1)}+\frac{x}{(x+1)(x-1)}$ The LCD is $=2(x+1)(x+1)(x-1)$. Multiply each numerator and denominator by the extra factor required to form the LCD. $=\frac{x-1}{(x+1)(x+1)}\times \frac{2(x-1)}{2(x-1)}-\frac{3}{2(x-1)}\times \frac{(x+1)(x+1)}{(x+1)(x+1)}+\frac{x}{(x+1)(x-1)}\times \frac{2(x+1)}{2(x+1)}$ Simplify. $=\frac{2(x-1)(x-1)}{2(x+1)(x+1)(x-1)}-\frac{3(x+1)(x+1)}{2(x+1)(x+1)(x-1)}+\frac{2x(x+1)}{2(x+1)(x+1)(x-1)}$ Add all the numerators. $=\frac{2(x-1)(x-1)-3(x+1)(x+1)+2x(x+1)}{2(x+1)(x+1)(x-1)}$ Use distributive property in the numerator. $=\frac{2(x^2-2x+1)-3(x^2+2x+1)+2x^2+2x}{2(x+1)(x+1)(x-1)}$ Clear the parentheses. $=\frac{2x^2-4x+2-3x^2-6x-3+2x^2+2x}{2(x+1)(x+1)(x-1)}$ Simplify. $=\frac{x^2-8x-1}{2(x+1)(x+1)(x-1)}$. or we can write. $=\frac{x^2-8x-1}{2(x+1)^2(x-1)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.