Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 427: 53

Answer

$\frac{16}{x-4}$.

Work Step by Step

The given expression is $=\frac{2x}{x-4}+\frac{64}{x^2-16}-\frac{2x}{x+4}$ First denominator $=(x-4)$. Second denominator $=x^2-16$. Factor $=x^2-4^2$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(x+4)(x-4)$ Third denominator $=(x+4)$ Substitute all factors into the given expression. $=\frac{2x}{(x-4)}+\frac{64}{(x+4)(x-4)}-\frac{2x}{(x+4)}$ The LCM of both denominators is $=(x+4)(x-4)$. $=\frac{2x}{(x-4)}\times \frac{x+4}{x+4}+\frac{64}{(x+4)(x-4)}-\frac{2x}{(x+4)}\times \frac{x-4}{x-4}$ Simplify. $=\frac{2x(x+4)}{(x-4)(x+4)}+\frac{64}{(x+4)(x-4)}-\frac{2x(x-4)}{(x+4)(x-4)}$ $=\frac{2x(x+4)+64-2x(x-4)}{(x-4)(x+4)}$ $=\frac{2x^2+8x+64-2x^2+8x}{(x-4)(x+4)}$ Simplify. $=\frac{16x+64}{(x-4)(x+4)}$ Factor the numerator as shown below. $=16x+64$ $=16(x+4)$ Substitute into the fraction. $=\frac{16(x+4)}{(x-4)(x+4)}$ Cancel common terms. $=\frac{16}{x-4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.