Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Cumulative Review Exercises - Page 251: 20

Answer

$\{(-3,2)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 3x& +4y&=&-1\\ -2x& +y & =&8 \end{matrix}\right.$ Determinant $D$ consists of the $x$ and $y$ coefficients. $D=\begin{vmatrix} 3& 4 \\ -2& 1 \end{vmatrix}=(3)(1)-(-2)(4)=3+8=11$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} -1& 4 \\ 8& 1 \end{vmatrix}=(-1)(1)-(8)(4)=-1-32=-33$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 3& -1 \\ -2& 8 \end{vmatrix}=(3)(8)-(-2)(-1)=24-2=22$ By using Cramer's rule we have. $x=\frac{D_x}{D}=\frac{-33}{11}=-3$ and $y=\frac{D_y}{D}=\frac{22}{11}=2$ Hence, the solution set is $\{(x,y)\} =\{(-3,2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.