Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Cumulative Review Exercises - Page 251: 19

Answer

$\{(3,-2,1)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 2x& +3y &-z&=&-1\\ x& +2y & +3z&=&2\\ 3x& +5y &-2z &=&-3 \end{matrix}\right.$ The augmented matrix is $\Rightarrow \left[\begin{array}{ccc|c} 2 & 3 & -1& -1\\ 1 & 2 & 3& 2 \\ 3&5&-2&-3 \end{array}\right]$ Perform $R_1\rightarrow \frac{R_1}{2}$. $\Rightarrow \left[\begin{array}{ccc|c} 2/2 & 3/2 & -1/2& -1/2\\ 1 & 2 & 3& 2 \\ 3&5&-2&-3 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3/2 & -1/2& -1/2\\ 1 & 2 & 3& 2 \\ 3&5&-2&-3 \end{array}\right]$ Perform $R_2\rightarrow R_2- R_1$ and $R_3\rightarrow R_3-3 R_1$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3/2 & -1/2& -1/2\\ 1-1 & 2-3/2 & 3-(-1/2)& 2-(-1/2) \\ 3-3(1)&5-3(3/2)&-2-3(-1/2)&-3-3(-1/2) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3/2 & -1/2& -1/2\\ 0 & 1/2 & 7/2& 5/2 \\ 0&1/2&-1/2&-3/2 \end{array}\right]$ Perform $R_2\rightarrow R_2(2)$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3/2 & -1/2& -1/2\\ 0(2) & 1/2(2) & 7/2(2)& 5/2(2) \\ 0&1/2&-1/2&-3/2 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3/2 & -1/2& -1/2\\ 0 & 1 & 7& 5 \\ 0&1/2&-1/2&-3/2 \end{array}\right]$ Perform $R_1\rightarrow R_1- R_2(3/2)$ and $R_3\rightarrow R_3- R_2(1/2)$. $\Rightarrow \left[\begin{array}{ccc|c} 1-(0)(3/2) & 3/2-(1)(3/2) & -1/2-(7)(3/2) & -1/2-(5)(3/2) \\ 0 & 1 & 7& 5 \\ 0-(0)(1/2)&1/2-(1)(1/2)&-1/2-(7)(1/2)&-3/2-(5)(1/2) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0& -11 & -8 \\ 0 & 1 & 7& 5 \\ 0&0&-4&-4 \end{array}\right]$ Perform $R_3\rightarrow R_3/(-4)$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0& -11 & -8 \\ 0 & 1 & 7& 5 \\ 0/(-4)&0/(-4)&-4/(-4)&-4 /(-4) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0& -11 & -8 \\ 0 & 1 & 7& 5 \\ 0&0&1&1 \end{array}\right]$ Perform $R_1\rightarrow R_1+11 R_3$ and $R_2\rightarrow R_2-7 R_3$. $\Rightarrow \left[\begin{array}{ccc|c} 1+11(0) & 0+11(0)& -11+11(1) & -8+11(1) \\ 0-7(0) & 1-7(0) & 7-7(1)& 5-7(1) \\ 0&0&1&1 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0& 0 & 3 \\ 0 & 1 & 0& -2 \\ 0&0&1&1 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=3$ and $\Rightarrow y=-2$. and $\Rightarrow z=1$. The solution set is $\{(x,y,z)\}=\{(3,-2,1)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.