Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 9 - Section 9.8 - Exponential and Logarithmic Equations and Problem Solving - Exercise Set - Page 591: 40

Answer

The solution is $x=-\dfrac{7}{2}+\dfrac{\sqrt{65}}{2}$

Work Step by Step

$\log_{4}x+\log_{4}(x+7)=1$ Combine the sum on the left side of the equation as the $\log$ of a product: $\log_{4}x(x+7)=1$ Evaluate the product inside the $\log$ on the left side: $\log_{4}(x^{2}+7x)=1$ Rewrite in exponential form: $x^{2}+7x=4^{1}$ $x^{2}+7x=4$ Take $4$ to the left side: $x^{2}+7x-4=0$ Solve using the quadratic formula, which is $x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$ In this particular case, $a=1$, $b=7$ and $c=-4$. Substitute the known values into the formula and evaluate: $x=\dfrac{-7\pm\sqrt{7^{2}-4(1)(-4)}}{2(1)}=\dfrac{-7\pm\sqrt{49+16}}{2}=...$ $...=\dfrac{-7\pm\sqrt{65}}{2}=-\dfrac{7}{2}\pm\dfrac{\sqrt{65}}{2}$ Verify the solutions found by plugging them into the original equation: $x=-\dfrac{7}{2}-\dfrac{\sqrt{65}}{2}$ $\log_{4}\Big(-\dfrac{7}{2}-\dfrac{\sqrt{65}}{2}\Big)+\log_{4}\Big(-\dfrac{7}{2}-\dfrac{\sqrt{65}}{2}+7\Big)=1$ False $x=-\dfrac{7}{2}+\dfrac{\sqrt{65}}{2}$ $\log_{4}\Big(-\dfrac{7}{2}+\dfrac{\sqrt{65}}{2}\Big)+\log_{4}\Big(-\dfrac{7}{2}+\dfrac{\sqrt{65}}{2}+7\Big)=1$ True The solution is $x=-\dfrac{7}{2}+\dfrac{\sqrt{65}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.