Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 9 - Section 9.8 - Exponential and Logarithmic Equations and Problem Solving - Exercise Set - Page 591: 39

Answer

The solution is $x=-\dfrac{5}{2}+\dfrac{\sqrt{33}}{2}$

Work Step by Step

$\log_{2}x+\log_{2}(x+5)=1$ Combine the sum on the left side of the equation as a product: $\log_{2}x(x+5)=1$ Evaluate the product inside the $\log$ on the left side: $\log_{2}(x^{2}+5x)=1$ Rewrite the equation in exponential form: $2^{1}=x^{2}+5x$ Rearrange: $x^{2}+5x-2=0$ Use the quadratic formula to solve this equation. The formula is $x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$ For this particular equation, $a=1$, $b=5$ and $c=-2$ Substitute the known values into the formula and evaluate: $x=\dfrac{-5\pm\sqrt{5^{2}-4(1)(-2)}}{2(1)}=\dfrac{-5\pm\sqrt{25+8}}{2}=...$ $...=\dfrac{-5\pm\sqrt{33}}{2}=-\dfrac{5}{2}\pm\dfrac{\sqrt{33}}{2}$ Verify the solutions by plugging them into the original equation: $x=-\dfrac{5}{2}-\dfrac{\sqrt{33}}{2}$ $\log_{2}\Big(-\dfrac{5}{2}-\dfrac{\sqrt{33}}{2}\Big)+\log_{2}\Big(-\dfrac{5}{2}-\dfrac{\sqrt{33}}{2}+5\Big)\ne1$ False $x=-\dfrac{5}{2}+\dfrac{\sqrt{33}}{2}$ $\log_{2}\Big(-\dfrac{5}{2}+\dfrac{\sqrt{33}}{2}\Big)+\log_{2}\Big(-\dfrac{5}{2}+\dfrac{\sqrt{33}}{2}+5\Big)=1$ True The solution is $x=-\dfrac{5}{2}+\dfrac{\sqrt{33}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.