Answer
$x^2y^3(y^2+1)(y^4-y^2+1)$
Work Step by Step
Factoring the $GCF=
x^2y^3
$ results to $
x^2y^3(y^6+1)
$. Using $a^3+b^3=(a+b)(a^2-ab+b^2)$ or the factoring of the sum of 2 cubes, then,
\begin{array}{l}
x^2y^3(y^6+1)
\\=
x^2y^3[(y^2)+(1)][(y^2)^2-(y^2)(1)+(1)^2]
\\=
x^2y^3(y^2+1)(y^4-y^2+1)
.\end{array}