Answer
See graph
Work Step by Step
$$x=-3y^2+30y$$
$$\frac{-1}{3}x=y^2-10y$$
Complete the square.
$$25+\frac{-1}{3}x=y^2-5y+25$$
$$25+\frac{-1}{3}x=(y-5)^2$$
$$-\frac{1}{3}x=(y-5)^2-25$$
$$x=-3(y-5)^2+75$$
The vertex is (75,5) and the parabola opens left.
Substitute an x-value to find its corresponding y-values.
$$0=-3(y-5)^2+75$$
$$25=(y-5)^2$$
$$5=y-5$$
$$10=y$$
$$(0,10)$$
$$-5=y-5$$
$$0=y$$
$$(0,0)$$
Plot these points on a graph and connect with a smooth curve.