Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.3 Geometric Sequences and Series - 14.3 Exercise Set - Page 912: 61

Answer

$\frac{5}{1024}\text{ ft}$.

Work Step by Step

1. Familiarize yourself with the problem. The rebound distance from a geometric sequence is: $\frac{1}{4}\cdot 20\text{ ft},{{\left( \frac{1}{4} \right)}^{2}}\cdot 20\text{ ft},{{\left( \frac{1}{4} \right)}^{3}}\cdot 20\text{ ft},\ldots =5\text{ ft},\left( \frac{1}{4} \right)\cdot 5\text{ ft},{{\left( \frac{1}{4} \right)}^{2}}\cdot 5\text{ ft},\ldots $ The height of the ${{6}^{\text{th}}}$ rebound is the 6th term of the sequence. 2. Translate the problem into an equation. The above sequence is a geometric sequence for which, ${{a}_{1}}=5\text{ ft}$ And, $\begin{align} & r=\frac{\frac{1}{4}\cdot 5\text{ ft}}{5\text{ ft}} \\ & =\frac{1}{4} \end{align}$ And, $n=6$ ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$, So, $\begin{align} & {{a}_{n}}={{a}_{1}}{{r}^{n-1}} \\ & {{a}_{6}}=\left( 5\text{ ft} \right){{\left( \frac{1}{4} \right)}^{6-1}} \end{align}$ 3. Carry out the mathematical operations to solve the equation. Substitute $n=6, {{a}_{1}}=5 \text{ ft}$ and $r=\frac{1}{4}$, $\begin{align} & {{a}_{6}}=\left( 5\text{ ft} \right){{\left( \frac{1}{4} \right)}^{6-1}} \\ & =\left( 5\text{ ft} \right){{\left( \frac{1}{4} \right)}^{5}} \\ & =\frac{5}{1024}\text{ ft} \end{align}$ Thus, the rebound height is$\frac{5}{1024}\text{ ft}$ the 6th time
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.