Answer
$a_n=\frac{1}{x}\times\frac{1}{x}^{n-1}=(\frac{1}{x})^{n}$
Work Step by Step
The general term in a geometric sequence is:
$a_n=a_1\times r^{n-1}$
Here, $a_1=\frac{1}{x}$
We can find the common ratio by dividing two subsequent terms:
$r=\frac{a_2}{a_1}=\frac{\frac{1}{x^2}}{\frac{1}{x}}=\frac{x}{x^2}=\frac{1}{x}$
The general term is:
$a_n=\frac{1}{x}\times\frac{1}{x}^{n-1}=\frac{1}{x}^{n}$