Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.3 Geometric Sequences and Series - 14.3 Exercise Set - Page 912: 37

Answer

$\frac{547}{18}$

Work Step by Step

The series is $\frac{1}{18}-\frac{1}{6}+\frac{1}{2}-\cdots $. Thus, ${{a}_{1}}=\frac{1}{18}$, $n=7$ and $\begin{align} & r=\frac{-\frac{1}{6}}{\frac{1}{18}} \\ & =-\frac{1}{6}\cdot \frac{18}{1} \\ & =-3 \end{align}$ Substituting ${{a}_{1}}=\frac{1}{18}$, $n=7$ and $r=-3$ in ${{S}_{n}}=\frac{{{a}_{1}}\left( 1-{{r}^{n}} \right)}{1-r}$, for any $r\ne 1$: $\begin{align} & {{S}_{9}}=\frac{\frac{1}{18}\left( 1-{{\left( -3 \right)}^{7}} \right)}{1-\left( -3 \right)} \\ & =\frac{\frac{1}{18}\left( 1+2187 \right)}{4} \\ & =\frac{\frac{1}{18}\cdot \left( 2188 \right)}{4} \\ & =\frac{547}{18} \end{align}$ Thus, the sum of the first nine terms, ${{S}_{7}}$ for $\frac{1}{18}-\frac{1}{6}+\frac{1}{2}-\cdots $ is $\frac{547}{18}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.