Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.3 Geometric Sequences and Series - 14.3 Exercise Set - Page 912: 40

Answer

$\frac{1-{{x}^{20}}}{1-{{x}^{2}}}$

Work Step by Step

The provided series, $1+{{x}^{2}}+{{x}^{4}}+{{x}^{6}}+\cdots $. Here, ${{a}_{1}}=1$, $n=10$ and $\begin{align} & r=\frac{x}{1} \\ & =x \end{align}$ Substitute ${{a}_{1}}=1$, $n=10$ and $r=x$ in ${{S}_{n}}=\frac{{{a}_{1}}\left( 1-{{r}^{n}} \right)}{1-r}$ $\begin{align} & {{S}_{10}}=\frac{1\left[ 1-{{\left( {{x}^{2}} \right)}^{10}} \right]}{1-{{x}^{2}}} \\ & =\frac{1-{{x}^{20}}}{1-{{x}^{2}}} \end{align}$ Thus, the sum of the first ten terms, ${{S}_{10}}$ for $1+{{x}^{2}}+{{x}^{4}}+{{x}^{6}}+\cdots $ is$\frac{1-{{x}^{20}}}{1-{{x}^{2}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.