Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.3 Geometric Sequences and Series - 14.3 Exercise Set - Page 912: 53

Answer

Yes, the given infinite geometric series has a limit, and the value of the limit is ${{S}_{\infty }}=\$25,000$.

Work Step by Step

The infinite geometric series is: $\$500{{\left(1.02\right)}^{-1}}+\$500{{\left(1.02\right)}^{-2}}+\$500{{\left(1.02\right)}^{-3}}+\cdots$ Here ${{a}_{1}}=\$500{{\left(1.02\right)}^{-1}},{{a}_{2}}=\$500{{\left(1.02\right)}^{-2}}$ $\begin{align} & \left| r \right|=\left| \frac{{{a}_{2}}}{{{a}_{1}}} \right| \\ & =\left| \frac{\$500{{\left(1.02\right)}^{-2}}}{\$500{{\left(1.02\right)}^{-1}}}\right|\\&=\left|{{\left(1.02\right)}^{-1}}\right|\\&={{\left(1.02\right)}^{-1}}\end{align}$ Find the limit of the infinite geometric series for the formula ${{S}_{\infty }}=\frac{{{a}_{1}}}{1-r}$. $\begin{align} & {{S}_{\infty }}=\frac{{{a}_{1}}}{1-r} \\ & =\frac{\$500{{\left(1.02\right)}^{-1}}}{1-{{\left(1.02\right)}^{-1}}}\\&=\frac{\frac{\$500}{\left(1.02\right)}}{1-\left(\frac{1}{1.02}\right)}\\&=\frac{\frac{\$500}{1.02}}{\frac{0.02}{1.02}}\end{align}$ This implies that, $\begin{align} & {{S}_{\infty }}=\frac{\$500}{1.02}\times\frac{1.02}{0.02}\\&=\frac{\$500}{0.02}\\&=\$25,000\end{align}$ Thus, the limit of the infinite geometric series is ${{S}_{\infty }}=\$25,000$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.