Answer
$t$
Work Step by Step
Using $\log_bx^m=m\log_bx$ or the Power Rule of Logarithms, the given expression, $
\log_{Q}Q^{t}
,$ is equivalent to
\begin{array}{l}\require{cancel}
t\log_{Q}Q
.\end{array}
Since $\log_QQ=1,$ the expression, $
t\log_{Q}Q
,$ simplifies to
\begin{array}{l}\require{cancel}
t(1)
\\\\=
t
.\end{array}