Answer
$\log_a (x-3)$
Work Step by Step
Using the properties of logarithms, the given expression, $
\log_a (x^2-9)-\log_a (x+3)
,$ simplifies to
\begin{array}{l}\require{cancel}
\log_a \dfrac{x^2-9}{x+3}
\\\\=
\log_a \dfrac{(x+3)(x-3)}{x+3}
\\\\=
\log_a \dfrac{(\cancel{x+3})(x-3)}{\cancel{x+3}}
\\\\=
\log_a (x-3)
.\end{array}