Answer
$1.953$
Work Step by Step
Using the properties of logarithms, the given expression, $
\log_b 15
,$ is equivalent to
\begin{array}{l}\require{cancel}
\log_b (3\cdot5)
\\\\=
\log_b 3+\log_b 5
.\end{array}
Since it is given that $
\log_b 3=0.792
$ and $
\log_b5=1.161
$, the expression above, $
\log_b 3+\log_b 5
,$ evaluates to
\begin{array}{l}\require{cancel}
0.792+1.161
\\\\=
1.953
.\end{array}