Answer
$4\log_a x-\log_a y-2\log_a z$
Work Step by Step
Using the properties of logarithms, the given expression, $
\log_a \dfrac{x^4}{yz^2}
,$ is equivalent to
\begin{array}{l}\require{cancel}
\log_a x^4-\log_a (yz^2)
\\\\=
\log_a x^4-\left( \log_a y+\log_a z^2 \right)
\\\\=
\log_a x^4-\log_a y-\log_a z^2
\\\\=
4\log_a x-\log_a y-2\log_a z
.\end{array}