Answer
$2\log_b w+\log_b x-3\log_b y-\log_b z$
Work Step by Step
Using the properties of logarithms, the given expression, $
\log_b \dfrac{w^2x}{y^3z}
,$ is equivalent to
\begin{array}{l}\require{cancel}
\log_b (w^2x)-\log_b (y^3z)
\\\\=
\log_b w^2+\log_b x-\left( \log_b y^3+\log_b z \right)
\\\\=
\log_b w^2+\log_b x-\log_b y^3-\log_b z
\\\\=
2\log_b w+\log_b x-3\log_b y-\log_b z
.\end{array}