College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 2, Functions - Section 2.7 - Combining Functions - 2.7 Exercises - Page 252: 9

Answer

$(f+g)(x)=2x^{2}+x\rightarrow$ $D=(-\infty,+\infty)$ $(f-g)(x)=x \rightarrow$ $D=(-\infty,+\infty)$ $(f.g)(x)=x^{4}+x^{3} \rightarrow$ $D=(-\infty,+\infty)$ $(\frac{f}{g})(x)=\frac{x+1}{x} \rightarrow$ $D=[0,+\infty)$

Work Step by Step

We are given $f(x)=x^{2}+x$ and $g(x)=x^{2}$ $(f+g)(x)=2x^{2}+x\rightarrow$ the domain is $(-\infty,+\infty)$ $(f-g)(x)=x \rightarrow$ the domain is $(-\infty,+\infty)$ $(f.g)(x)=x^{4}+x^{3} \rightarrow$ the domain is $(-\infty,+\infty)$ $(\frac{f}{g})(x)=\frac{x^{2}+x}{x^{2}}=\frac{x+1}{x} \rightarrow$ the domain is $[0,+\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.