College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 2, Functions - Section 2.7 - Combining Functions - 2.7 Exercises - Page 252: 13

Answer

For $f+g, f-g, fg$: $D=\{x|-3 \leq x \leq 5\}$, For $\frac{f}{g}$: $D_{\frac{f}{g}}=\{x|-3 \lt x \leq 5\}\}$,

Work Step by Step

$f(x)=\sqrt {25-x^2}$, $D_f=\{x|-5\leq x\leq 5 \}$, $g(x)=\sqrt {x+3}$, $D_g=\{x|x \geq -3\}$, thus, $f+g=\sqrt {25-x^2} + \sqrt {x+3}$, $D_{f+g}=\{x|-3 \leq x \leq 5\}$, $f-g=\sqrt {25-x^2} - \sqrt {x+3}$, $D_{f-g}=\{x|-3 \leq x \leq 5\}$, $f \times g=(\sqrt {25-x^2})(\sqrt {x+3})=\sqrt {(25-x^2)(x+3)}$ $D_{f \times g}=\{x|-3 \leq x \leq 5\}$, $\frac{f}{g}=\frac{\sqrt {25-x^2}}{\sqrt {x+3}}=\sqrt {\frac{25-x^2}{x+3}}$, $D_{\frac{f}{g}}=\{x|-3 \lt x \leq 5\}\}$,
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.