College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 2, Functions - Section 2.7 - Combining Functions - 2.7 Exercises - Page 252: 16

Answer

For $f+g, f-g, fg$: $D=\{x|x \in \mathbb{R}-\{-1\}\}$ For $\frac{f}{g}$: $D_{\frac{f}{g}}=\{x|x \in \mathbb{R}-\{-1,0\}\}$,

Work Step by Step

$f(x)=\frac{2}{x+1}$, $D_f=D=\{x|x \in \mathbb{R}-\{-1\}\}$, $g(x)=\frac{x}{x+1}$, $D_g=D=\{x|x \in \mathbb{R}-\{-1\}\}$, thus, $f+g=\frac{2}{x+1}+\frac{x}{x+1}$, $D_{f+g}=D=\{x|x \in \mathbb{R}-\{-1\}\}$, $f-g=\frac{2}{x+1}-\frac{x}{x+1}$, $D_{f-g}=D=\{x|x \in \mathbb{R}-\{-1\}\}$, $f \times g=\frac{2}{x+1} \times \frac{x}{x+1}= \frac{2x}{x^2+2x+1}$ $D_{f\times g}=D=\{x|x \in \mathbb{R}-\{-1\}\}$ $\frac{f}{g}=\frac{\frac{2}{x+1}}{\frac{x}{x+1}}=\frac{2x+2}{x^2+x}$ $D_{\frac{f}{g}}=\{x|x \in \mathbb{R}-\{-1,0\}\}$,
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.