College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 2, Functions - Section 2.7 - Combining Functions - 2.7 Exercises - Page 252: 14

Answer

For $f+g, f-g, fg$: $D=[-4,-1] \cup [1, 4]$, For $\frac{f}{g}$: $D_{\frac{f}{g}}=[-4, -1) \cup (1, 4]$

Work Step by Step

$f(x)=\sqrt {16-x^2}$, $16-x^2\geq 0$ for $x\in[-4,4]$ $D_f=[-4, 4]$, $g(x)=\sqrt {x^2-1}$, $x^2-1\geq 0$ for $x\in(-\infty, -1] \cup [1, \infty)$ $D_g=(-\infty, -1] \cup [1, \infty)$, thus, $f+g=\sqrt {16-x^2} + \sqrt {x^2-1}$, $D_{f+g}=[-4,-1] \cup [1, 4]$, $f-g=\sqrt {16-x^2} - \sqrt {x^2-1}$, $D_{f-g}=[-4,-1] \cup [1, 4]$, $f \times g=(\sqrt {16-x^2})(\sqrt {x^2-1})=\sqrt {(16-x^2)(x^2-1)}$ $D_{f\times g}=[-4,-1] \cup [1, 4]$, $\frac{f}{g}=\frac{\sqrt {16-x^2}}{\sqrt {x^2-1}}=\sqrt {\frac{16-x^2}{x^2-1}}$, $x^2-1=0\Rightarrow x=\pm 1$ $D_{\frac{f}{g}}=[-4, -1) \cup (1, 4]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.