College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 2, Functions - Section 2.7 - Combining Functions - 2.7 Exercises - Page 252: 15

Answer

For $f+g, f-g, fg$: $D=(-\infty,-4)\cup(-4,0)\cup(0,\infty)$, For $\frac{f}{g}$: $(-\infty,-4)\cup(-4,0)\cup(0,\infty)$

Work Step by Step

$f(x)=\frac{2}{x}$, $D_f=\{x|x \in \mathbb{R}-\{0\}\}$, $g(x)=\frac{4}{x+4}$, $D_g=\{x|x \in \mathbb{R}-\{-4\}\}$, thus, $f+g=\frac{2}{x}+\frac{4}{x+4}$, $D_{f+g}=(-\infty,-4)\cup(-4,0)\cup(0,\infty)$, $f-g=\frac{2}{x}-\frac{4}{x+4}$, $D_{f-g}=(-\infty,-4)\cup(-4,0)\cup(0,\infty)$, $f \times g=\frac{2}{x} \times \frac{4}{x+4}= \frac{8}{x^2+4x}$ $D_{f\times g}=(-\infty,-4)\cup(-4,0)\cup(0,\infty)$ $\frac{f}{g}=\frac{\frac{2}{x}}{\frac{4}{x+4}}=\frac{2x+8}{4x}$ $D_{\frac{f}{g}}=(-\infty,-4)\cup(-4,0)\cup(0,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.