Answer
$(f+g)(x)=x+\sqrt x \rightarrow$ $D=[0,+\infty)$
$(f-g)(x)=x-\sqrt x \rightarrow$ $D=[0,+\infty)$
$(f.g)(x)=x\sqrt x \rightarrow$ $D=[0,+\infty)$
$(\frac{f}{g})(x)=\sqrt x \rightarrow$ $D=[0,+\infty)$
Work Step by Step
We are given $f(x)=x$ and $g(x)=\sqrt x$
$(f+g)(x)=x+\sqrt x \rightarrow$ the domain is $[0,+\infty)$
$(f-g)(x)=x-\sqrt x \rightarrow$ the domain is $[0,+\infty)$
$(f.g)(x)=x\sqrt x \rightarrow$ the domain is $[0,+\infty)$
$(\frac{f}{g})(x)=\sqrt x \rightarrow$ the domain is $[0,+\infty)$