Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.4 - Solving Quadratic Equations by Completing the Square - Exercises - Page 511: 21

Answer

$x\approx 6.27$ and $x\approx -1.27$.

Work Step by Step

The given equation is $\Rightarrow x^2-5x=8$ Find the value of $(\frac{b}{2})^2$. Substitute $-5$ for $b$. $=(\frac{-5}{2})^2$ Simplify. $=\frac{25}{4}$ Add $\frac{25}{4}$ to each side of the equation. $\Rightarrow x^2-5x+\frac{25}{4}=8+\frac{25}{4}$ Simplify. $\Rightarrow x^2-5x+\frac{25}{4}=\frac{32+25}{4}$ $\Rightarrow x^2-5x+\frac{25}{4}=\frac{57}{4}$ Write the left side as the square of a binomial. $\Rightarrow (x-\frac{5}{2})^2=\frac{57}{4}$ Take the square root of each side. $\Rightarrow x-\frac{5}{2}=\pm \sqrt{\frac{57}{4}}$ Add $\frac{5}{2}$ from each side. $\Rightarrow x-\frac{5}{2}+\frac{5}{2}=\pm \sqrt{\frac{57}{4}}+\frac{5}{2}$ Simplify. $\Rightarrow x=\pm\frac{ \sqrt{57}}{2}+\frac{5}{2}$ The solutions are $x=\frac{ \sqrt{57}}{2}+\frac{5}{2}\approx 6.27$ and $x=-\frac{ \sqrt{57}}{2}+\frac{5}{2}\approx -1.27$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.