Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1 - Properties of Radicals - Exercises - Page 486: 54

Answer

$\frac{\sqrt[3]{2y}}{6y}$

Work Step by Step

The given expression is $=\sqrt[3]{\frac{1}{108y^2}}$ Factor as cube terms. $=\sqrt[3]{\frac{1}{27\cdot 4y^2}}$ Multiply by $\frac{\sqrt[3]{2y}}{\sqrt[3]{2y}}$. $=\sqrt[3]{\frac{1}{27\cdot 4y^2}} \cdot \frac{\sqrt[3]{2y}}{\sqrt[3]{2y}}$ Use product property of cube roots. $=\sqrt[3]{\frac{2y}{27\cdot 4y^2\cdot 2y}}$ Simplify. $=\sqrt[3]{\frac{2y}{27\cdot 8y^3}}$ Use quotient property of cube roots. $=\frac{\sqrt[3]{2y}}{\sqrt[3]{27\cdot 8y^3}}$ Simplify. $=\frac{\sqrt[3]{2y}}{3\cdot 2y}$ $=\frac{\sqrt[3]{2y}}{6y}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.