Answer
$0.125 $ and $0.253 $
Work Step by Step
We will take the sine of an angle.
That is, $\sin \theta =\dfrac{5}{s}$
Now, take the inverse of the sine of an angle.
$\theta=\arcsin (\dfrac{5}{s}) $ or, $\theta=\sin^{-1} (\dfrac{5}{s}) $
Plug in the data to obtain:
$\theta=\arcsin (\dfrac{5}{40})=0.125 $
and
$\theta=\arcsin (\dfrac{5}{20})=0.253 $