Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 6 - 6.6 - Inverse Trigonometric Functions - 6.6 Exercises - Page 485: 75

Answer

When $x \gt 0$, then we have: $arctan \dfrac{9}{x}=\arcsin \dfrac{9}{\sqrt {x^2+81}} $ When $x \lt 0$, then we have: $arctan \dfrac{9}{x}=\arcsin \dfrac{-9}{\sqrt {x^2+81}} $

Work Step by Step

In order to compute the length of the hypotenuse we will use Pythagorean Theorem. Consider $\theta=arctan \dfrac{9}{x}$ $h=\sqrt {x^2+y^2}=\sqrt {x^2+9^2 }=\sqrt {x^2+81}$ When $x \gt 0$, then we have: $\sin \theta=\dfrac{9}{\sqrt {x^2+81}} $ When $x \lt 0$, then we have: $\sin \theta=\dfrac{-9}{\sqrt {x^2+81}} $ When $x \gt 0$, then we have: $arctan \dfrac{9}{x}=\arcsin \dfrac{9}{\sqrt {x^2+81}} $ When $x \lt 0$, then we have: $arctan \dfrac{9}{x}=\arcsin \dfrac{-9}{\sqrt {x^2+81}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.