Answer
$cos(arcsin~2x)=\sqrt {1-4x^2}$
Work Step by Step
Let $u=arcsin~2x~~$ (Range: $-\frac{\pi}{2}\leq u\leq\frac{\pi}{2}$).
Then: $2x=sin~u~~$
$cos^2u+sin^2u=1$
$cos^2u=1-sin^2u$
$cos^2u=1-(2x)^2$
$cos^2u=1-4x^2$
$cos~u=+\sqrt {1-4x^2}$
$cos(arcsin~2x)=\sqrt {1-4x^2}$