Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 6 - 6.6 - Inverse Trigonometric Functions - 6.6 Exercises - Page 485: 51

Answer

$sin(arctan\frac{3}{4})=\frac{3}{5}$

Work Step by Step

Let $u=arctan\frac{3}{4}$. Then: $tan~u=\frac{3}{4}$ $cot~u=\frac{1}{tan~u}=\frac{4}{3}$ The range $arctan~x$ is $-\frac{\pi}{2}\lt x\lt\frac{\pi}{2}$. So, since $arctan\frac{3}{4}\gt0$, then $0\lt u\lt\frac{\pi}{2}$ (First Quadrant) $csc^2u=1+cot^2u$ $csc^2u=1+(\frac{4}{3})^2$ $csc^2u=1+\frac{16}{9}=\frac{25}{9}$ $csc~u=\frac{5}{3}$ (First Quadrant) $sin(arctan\frac{3}{4})=sin~u=\frac{1}{csc~u}=\frac{3}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.