Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 6 - 6.6 - Inverse Trigonometric Functions - 6.6 Exercises - Page 485: 71

Answer

$$\frac{\sqrt{a^2+x^2}}{\pm x}$$

Work Step by Step

We have,$$\csc \left(\arctan \frac{x}{a}\right)$$ Now, solving by using the methods of inverse trigonometric functions: \begin{aligned} & \arctan \left(\frac{x}{a}\right)=\theta \\ & \Rightarrow \tan \theta=\frac{x}{a} \\ \Rightarrow & \cot \theta=\frac{a}{x}, x \neq 0 \\ \Rightarrow & \csc ^{2} \theta=1+\cot ^{2} \theta \\ =& 1+\frac{a^{2}}{x^{2}} \\ =& \frac{x^{2}+a^{2}}{x^{2}} \\ \Rightarrow & \csc \theta=\frac{\sqrt{a^{2}+x^{2}}}{\pm x} \\ & \csc \left(\arctan \left(\frac{x}{a}\right)\right) \\ =& \frac{\sqrt{a^{2}+x^{2}}}{\pm x}, x \neq 0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.