Answer
$$A=\frac{3\sqrt{9077915}}{4}$$
Work Step by Step
By Heron's Formula, we know:
$$A=\sqrt{s(s-a)(s-b)(s-c)}$$
Where:
$$s=\frac{a+b+c}{2}$$
Thus, we find:
$$s=\frac{81+67+71}{2}=\frac{219}{2} \\ A=\sqrt{\frac{219}{2}\left(\frac{219}{2}-81\right)\left(\frac{219}{2}-67\right)\left(\frac{219}{2}-71\right)} \\ A=\frac{3\sqrt{9077915}}{4}$$