Answer
See below
Work Step by Step
We are given $a, c, b$. Use law of cosines to find $c$:
$$c^2=a^2+b^2-2ac\cos C\\ c=\sqrt a^2+b^2-2ab\cos C\\c\approx 58.21$$
Use law of sines to find: $\frac{\sin B}{b}=\frac{\sin C}{c}\\\sin B=\frac{\sin C}{c}\times b\\\arcsin (\sin B)=\arcsin (\frac{\sin C}{c}b)\\B=\arcsin(\frac{\sin C}{c}. b)\\A\approx 47.28^\circ$
Since the sum of the triangle is $180^\circ$, we obtain:
$$A+B+C=180^\circ\\A=180^\circ-A-B\\A=180^\circ -96^\circ -47.28^\circ\\A=36.72^\circ$$