Answer
$$A=\frac{9\sqrt{143}}{4}$$
Work Step by Step
By Heron's Formula, we know:
$$A=\sqrt{s(s-a)(s-b)(s-c)}$$
Where:
$$s=\frac{a+b+c}{2}$$
Thus, we find:
$$s=\frac{12+7+8}{2}=\frac{27}{2} \\ A=\sqrt{\frac{27}{2}\left(\frac{27}{2}-12\right)\left(\frac{27}{2}-7\right)\left(\frac{27}{2}-8\right)} \\ A=\frac{9\sqrt{143}}{4}$$