Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.6 Apply the Law of Cosines - 13.6 Exercises - Skill Practice - Page 892: 13

Answer

See below

Work Step by Step

We are given $a, b,c$. Use law of cosines to find $A$: $$a^2=b^2+c^2-2bc\cos A\\ 18^2=28^2+13^2-2(28)(13)\cos A\\\cos A=\frac{629}{728}\\A=\cos^{-1}(\frac{629}{728})=30.2 ^\circ$$ Use law of sines to find: $\frac{\sin B}{b}=\frac{\sin A}{a}\\\sin B=\frac{\sin A}{a}\times b\\\arcsin (\sin B)=\arcsin (\frac{\sin A}{a}b)\\B=\arcsin(\frac{\sin A}{a}. b)\\B=\arcsin(\frac{\sin 30.2^\circ}{18}. 28)\approx 51.6^\circ$ OR $B \approx 128.4^\circ$ Since the sum of the triangle is $180^\circ$, we obtain: $$A+B+C=180^\circ\\C=180^\circ-A-B\\C=180^\circ -30.2^\circ - 51.6 ^\circ\\C\approx 98.2^\circ$$ For $B=128.4 ^\circ$, we have $C=180^\circ -30.2^\circ - 128.4 ^\circ=21.4^\circ$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.