Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.6 Apply the Law of Cosines - 13.6 Exercises - Skill Practice - Page 892: 14

Answer

See below

Work Step by Step

We are given $a, b,c$. Use law of cosines to find $A$: $$a^2=b^2+c^2-2bc\cos A\\ 38^2=31^2+35^2-2(31)(35)\cos A\\\cos A=\frac{38^2-31^2-35^2}{-2(31)(35)}\\A\approx70^\circ$$ Use law of sines to find: $\frac{\sin B}{b}=\frac{\sin A}{a}\\\sin B=\frac{\sin A}{a}\times b\\\arcsin (\sin B)=\arcsin (\frac{\sin A}{a}b)\\B=\arcsin(\frac{\sin A}{a}. b)\\B\approx 50^\circ$ Since the sum of the triangle is $180^\circ$, we obtain: $$A+B+C=180^\circ\\C=180^\circ-A-B\\C=180^\circ -70^\circ - 50^\circ\\C\approx 60^\circ$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.