Answer
$1.2\times 10^6Kg$
Work Step by Step
We can find the required mass as follows:
$N=\frac{E}{E_U}$
$N=\frac{8.42\times 10^9J}{173MeV}(\frac{1MeV}{1.6\times 10^{-13}})=3.035\times 10^{30}$
Now we can find the mass
$m=Nm_u$
We plug in the known values to obtain:
$m=3.035\times 10^{30}(235.0u)(1.66\times 10^{-27}Kg/u)$
$m=1.2\times 10^6Kg$