Answer
$1.57\times 10^4y$
Work Step by Step
We can find how old the bones are as follows:
$\lambda=\frac{\ln 2}{T_{\frac{1}{2}}}=\frac{\ln 2}{5730y}=1.210\times 10^{-4}y^{-1}$
We know that
$0.150N_{\circ}=N_{\circ}e^{-\pi t}$
$\implies 0.150=e^{-\pi t}$
Taking the natural log and solving for t, we obtain:
$t=\frac{\ln 0.150}{\pi}=-\frac{\ln 0.150}{1.210\times 10^{-4}y^{-1}}=1.57\times 10^4y$