Answer
The molar solubility for this compound in pure water is equal to $1.12 \times 10^{-18}M$
Work Step by Step
1. Write the $K_{sp}$ expression:
$ MX(s) \lt -- \gt 1M^{n+}(aq) + 1X^{n-}(aq)$
$1.27 \times 10^{-36} = [M^{n+}]^ 1[X^{n-}]^ 1$
2. Considering a pure solution: $[M^{n+}] = 1S$ and $[X^{n-}] = 1S$
$1.27 \times 10^{-36}= ( 1S)^ 1 \times ( 1S)^ 1$
$1.27 \times 10^{-36} = 1S^ 2$
$1.27 \times 10^{-36} = S^ 2$
$ \sqrt [ 2] {1.27 \times 10^{-36}} = S$
$1.12 \times 10^{-18} = S$
- This is the molar solubility value for this salt.